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FOR A CARGO ATRPLANE. IX — THE TEMPERATURE OF
THE WING LEADING-EDGE STRUCTURE-AS
'ESTABLISHED IN FLIGHT

By Bernard A. Schlaff and James Selna h

SUMMARY

As part of an Investligation of a thermal lce—prevention system
for a cargo alrplane the NACA has completed flight mesasurements of
the structure temperatures prevailing in the wing outer panel of the
elrplene. Sections of the wing panel were altered to represent three
commonly employed types of thermal ice—prevention systems.

Temporatures of the structural components of the forward por—
tion of the wing were obtained for varlous normal operating condi-—
tions of the airplane at 5000, 10,000, and 15,000 feet pressure
altitude. Controlled tests were made to determine the effects of
heated-alr temperature, heated-air flow rate, airspeed, and altitude
on the structure temperatures.

The structure temperature data have been campiled In a table
which should provide an Indication of the structure tempsratures
that prevall in a typlcal eir-heated wing:

The date obtailned indicate that the structure temperatures
vhich prevaill in a thermal ice—prevention system are sufficlently
high to merit some consideratlon in the deslgn of stressed members.
The varlables controlling the structure temperatures were analyzed,
and the heated-air temperature was establlished as the domlnant vari-—
able. The structure temperatures Increased in almost dlrect propor—
tion to increases in heated—alr temperature, but were much less
affected by changes in air flow rate, airspeed, and altlitude over
the test range.

The conclusion 1s reached that the most direct method for
increasing deficient surface temperatures is to incresase the tem—
perature of the heated alr with the understending, however, that
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this method willl result in a larger rise In structure temperature
than would occur if the surface temperature were raised by increas—
ing the heatled-air flow rate.

INTRODUCTION

As part of an investigation of a thermal ice—prevention system
for a typical transport or cargo airplane, the NACA has undertaken
an examination of the possible deleterious effects resulting from
the circulation of heated air adjacent to the airplane structurs.
This problem was not treated during the initial stages of the de-—
velomment of thermal lce—prevention equipment for airplanes by the
NACA (references 1 to 8) as 1t was considered to be of secondary
importance.

The possible deleterious effects resulting from alr heating of
the aluminum alloy structure of an airplane are (1) thermal stresses
generated by the existence of temperature gradients in the structure,
(2) increased susceptibility of the structure to corrosion, (3) re—
duction of the yield and ultimate strength of the structurs while it A
is at elevated temperatures, (4) creep of the structure at elevated
temperatures even when the stress is below the yleld point, and
(5) artificial aging of the structure. The subject of thermal a,
stresses was treated In the seventh report of this series, refersnce 9.
A metallurgical examination of the structure of the cargo alrplanse
employed in the present tests (reference 10) indicated that no cor—
rosive effects werse noted which could be attributed to the basic
principle of using free stream air as the heat—transfer medium in the
internal circulatory system of the airplane. The reduction in ulti-—
mate and yield strength, and also artificial aging, are dependent on
the maximum temperatures achleved by the structure and length of
time that the structure is maintained at these temperatures. Creep
of the structural material is dependent on these factors and also
the stress imposed on the structure.

The effects of temperature on the physical characteristics of
several aluminum alloys have been gquite extensively investigated
(references 11 to 14%). The remaining problem for the aircraft de—
slgner, therefore, is to predict the structure temperatures that
will occur during operation of the thermal ice—prevention system.

The establishment of basic heat—transfer data which would be
applicable to the computation of the temperature gradients in all
alrplane wWings was not considered to be practicable. It was be—
lieved, however, that structural temperature data for a typical -
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thermal lce—preventlion system would at least .provide soms indication
of the degree of temperature rise to be anticipated, and might pro—
vide a basls for estimating maximm temperatures in future similar
installations. Accordingly, the present investigation was umder—
taken to determine the structure temperatures in the left wing outer
panel of the cargo alrplane of references 3 to 9. The Investigation
included tests at varlous normal operating conditions, and other

tests in which the variables of heated—alr flow rate, heated—air tem—
perature, alrspeed, and altitude were individually varied to determine
the effect of each variable on the structure temperatures.

Description of Equimment

The cargo alrplane altered by the FACA to provide for thermal
ice—prevention is shown in figure 1. The thermal ice—prevention
equipment’ installed in the airplane 1s described In detail in refer—
ence 5. The wing outer panel, which is the concern of the present
investigation, 1s of a distributed flange—type construction with
spars at 30 percent and 70 percent chord. The airfoll sections of
the outer panel vary from an NACA 23017 section (198 in. chord) at
the root (station 0) to an NACA 4410.5 section (66 in. chord) at the
tip (station 412). All of the wing structural material is 24ST
Alcled aluwminum alloy. A typical sectlion of the leading edge show—
ing the alterations made to provide the thermal ice—prevention system
is shown in flgure 2. Typlcal detalls of the wlng structure are
illustrated in figures 3, 4, 5, and 6. Heated air was supplied to
the outer panel from an exhaust gas~to-alr heat exchanger
(reference 5). A valve was included in the ducting from the heat
exchenger to the wing to control the heated—elr flow rate. The flow
of heated alr within a section of the wing.1s illustrated in
figure 2. The flow of heated air throughout the wing outer panel
was simllar to that shown in figure 2 except that no nose rib liner
was employed between stations 82 and 142 and no nose ridb liner nor
nose ribs were employed between stations 292 and 412, This arrange—
ment (fig. T) provided data for three different types of internal
structure, all representative of possible thermal-system designs.

The temperature data were obtalned from the thermocouples
installed throughout the wing leadling—edge structure. In the case
of the internal structure, iron—constantan thermocouples were flash—
welded to the structure. For wing-surface temperatures, surface—type
thermocouples (iron—constantan thermocouples rolled to 0.002 in.
thickness) were cemented to the skin., The locatlons of the various
thermocouples are shown in figure 8. Thermocouples for which no
deta were obtained have been omitted in figure 8 and, therefore,
some numbers are missing in the thermocouple numerical order.
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In order to measure the temperature and flow rate of the heated alr
delivered to the wing outer panel, use was made of the venturi meter
and temperature survey in the duct from the heat exchanger to the
wing outer panel which are described in reference 5.

The thermocouple temperatures were recorded by a self-balancing
potenticmeter. The airplane flight conditlons were obtained from
the standard ailrcraft instruments, and the rate of climb was deter—
mined by observing the change in pressure altlitude for one-half
ninute Intervals.

TESTS

Temperature date for the wing outer—panel structurs were
obtained for various operating conditions of the airplene. Data
were obtained during ground werm—up, take—off, and during flight in
clear alr at approximately 5,000, 10,000 and 15,000 feet pressure
altitude with the alrplane flown at varlous normal operating con—
ditions. One set of data was obtained in clouds and a similar set
was obtained in clear air (no visible moisture) to illustrate the
effects of atmospheric moisture on the structure temperatures.
Tests were also made during £light In clear air to investligate the A
effects of variatlons of heated-alr flow rate, heated—elr tempsra—
ture, alrspeed, and altitude on the structure temperatures. The
heated—air flow rate was varled by controlling the valve in the duct o
between the heat exchanger and the wing outer pansl. The heated—
alr temperature was varied by control of the power output of the
left engine and adjusting the power output of the right engine to
provide the alrspeed desired.

RESULTS AND DISCUSSION

The recorded structure temperature date for the three types of
construction are presented in table I. The values of alrspesed given
are corrected indicated alrspeeds. The ambient—elr—temperature
values in the table have not been corrscted for the effects of
kinetic heating. The structure temperature data are presented as
temperature rises above ambient-air temperature in the table in order
to provide a common basis for comparison of the data. The actual
structural temperatures that would prevall at any given ambient-air
temperature may be approximated by the addition of the ambient—air
temperature to the temperature rises glven in table I.

The structure temperatures measured for the three variations of
construction used in the left-wing outer panel (fig. 7) are not
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directly comparable because the alrfoil sectlion changes throughout
the span both In shape and size and the heated air flow diminishes

in quantity and temperature as the flow progresses spanwise.

However, the presentation of the data for the three designs will give
gome 1ndication of the temperature to be expected in three commonly
employed types of thermal ice-prevention systems.

The maximum structure temperature rigses measured were obtained
during climb of the airplamne at 15,000 feet pressure altitudse
(test 13 of table I). The highest values of temperature rise for
the various components of the thermal ice—prevention system meas—
ured during this test were: nose rib lines, 393° F; baffle plate,

356° F; nose rib, 335° F; inner skin, 317° F; and outer skin,
235° F.

By assuming that operation of the thermal system could be
limited to a maximm free air temperature of 32° F, the actual tem—
peratures of these structural components would be 425° ¥, 388° F,
36T° F, 349° £, and 267° F, respectively. An indication of the
effect of temperatures of this magnitude on the yield and ultimate
strength of 24ST Alclad is obtalnable from reference 1l. In this
reference, the strength reduction is shown to be a function of both
maximum temperature and time. For a duration of 15 minutes at the
temperatures previously listed, the reduction of yleld and ultimate
strength in percent of the values at 75° F for the wing components
would be: mnose rib liner, 16 percent (yield) and 29 percent
(ultimate); baffle plate, 15 and 22 percent; mnose rib, 14 and 18
percent; inner skin, 13 and 16 percent; ~and outer skin, 6 and 10
percent. For times longer than 15 minutes up to at least 10 hours,
the yield strength remsins constant or increases and the ultimate
strength remains constant or decreases, depending on the temperature
considered (reference 11).

It should be pointed out that the alirplane tested had no pro—
visions for automatically controlling the heat flow to the wing.
Consequently, at low—speed high—power conditions such as those of
test 13, the heat delivered to the wing was considerably in excess
of that required for ice prevention. (An average skin—temperature
rise of 100° F in dry air at the leading edge is considered satis—
factory for ice preventlion for the speed range of the test airplane,
as given in reference 3.)

The heated-alr temperatures which prevailed during test 13
(an average air—temperaturs rise of 42LO F at station 37) were con—
siderably in excess of those that provided satisfactory lce prevention
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during tests of the thermal system in natural lcing conditions
(reference 6). If the maximm heated—eir temperature in the wing
were regulated to that required for ice prevention under eny normel
flight condlitions of the alrplane, the structure temperatures would
be considerably lower. Reference 6 indicates that the maximum actual
tempsrature of the heated air leaving the heat exchangers for the
wings was approximately 340° F during the tests in natural icing con—
ditions. The maximum temperature 1n the wing duct would be below
this value. If the hea.ted—air temperature in the wing duct did not
exceed a maximm of 320° F in a 32° F atmosphere, the maximum
gtructure tempera:ture rises that would prevail would be approximately‘
nose rib liner, 266° F; baffle plate, 240° F; nose rib, 225° F;
inner skin, 212° F; and outer skin, 1550 F. These values were
approximated from the relationship of heated—alr temperature to
structure temperature as discussed in detall later in this report.
They can be accepted as vaelid for any flight condition within the
test ra.nge wherein the air temperature in the wing duct is 320 P

in a 32 F atmosphere. If the structure were subjected to these tem—
perature rises for 15 minutes in a 32° F atmosphere, the reduction

in the yield strength in percent of the value at 75° F would be
approximately 3 percent for the outer skin and 4 to 9 percent for

the baffle plate, nose rib liner, nose rib, and Immer skin. The
corresponding ultimate strength reductions would be approximately

6 percent and 9 to 11 percent , respectively. These values are con—
siderably lower than those obtained without any regulatlion of the
thermal system. However, they are sufficlently high to 1llustrate
that the structure temperatures which prevail in a thermal lce—pre—
ventlon system merit same consideration in the design of stressed
members.

The effects of creep and artificial aging of Alclad 24ST
aluminum alloy are discussed in references 12 and 14, respectively.
Creep is dependent on the structure temperature, the time interval
that a member is subjected to the temperature, and the siress im—
posed on the member during the time Interval. Artificial aging may
produce a change in physical properties which will remain after the
gtructure cools, and the extent of aging 1s dependent on the tem—
peratures reached and the length of time that the member is sub--
Jected to these temperatures. The data of references 12 and 14
indicate that the effects of creep and artificlal aging are negli-—
glible for Alclad 24ST aluminum alloy at temperatures below 300° F.
At temperatures above this value the design of stressed members mey
requlire the consideration of these factors. Data presented in
reference 10 show that artificlal aging was present in the section
of the wing of the C—46 airplane where the heated air impinged upon
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the baffle plate on entering the wing. The result was a decrease
In elongation, a marked increase in yleld strength and a slight
Increase In ultimate strength.

Attempts have been made to predict the structure temperatures
preveiling in a heated wing and the attendant effects on the
structure. Insufficlent heat—transfer date are avallable, however,
to analyze, with any accuracy, the heat flow in the complex struc—
ture of a wing. The data of this report, however, can serve to ald
in the prediction of structure temperatures by showling the effect
of the variables of heated-elr temperature, air-flow rate, altitude,
elrspeed, and free water in the atmosphere on the structure tem—
peratures measured. ’

The effects of heated-eilr temperature (tests 16 to 20) and of
heated-air-flow rate (tests 17, 21, and 22) are presented in figures 9
and 10, respectively. The data plotted in these flgures are repre—
sentative of the structure temperature rises throughout the wing.

An analysls of flgure 9 Indlicates that the structure temperatures
Increase in almost direct proportion to the increase 1n heated-air
temperatures. For example, if the heated—air temperature is
increased 40 percent, all of the structure temperatures ars in—
creased by approximately 40O percent. Figure 10 indicates that a
change in flow rate of 1000 pounds per hour changes all of the struc—
ture temperatures by about 11° F. Thus a change 1n air-flow rate
affects the low structure temperatures more, in proportion, than it
affects the high structure temperatures. For example, 1f the flow
rate 1s increased 40 psrcent from 3000 pounds per hour, figure 10
indicates that S—2 (a skin temperature) would be increased by about
19 percent, while M30 (a baffle-plate temperature) would be in—
creased by only approximately 6 percent.

In the case of heated-wing design, therefors, which was defi—
clent in surface—temperature rise but critical in intermal-structure
temperature, the more deslirable method of increasing the skin tem—
perature would be to Increase the air—flow rate. Thils would result
in the achievement of the desired skin temperature at a minimm
increase 1n structure temperature. If the structure temperatures
were not critical, however, the skin temperatures could be Increased
most efficlently by lncreasing the heated~elr tempesrature. In the
cage of the present tests the range of air—flow rates was not large
and, consequently, the structure-~temperature data were almost inde—
pendent of alr—Llow rate.

An examination of tests 6 and 23 indicates that a change in
ailrspeed from 114 to 162 miles per hour had little effect on the
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structure temperatures. Tests 9 and 19 show that a change 1n alti-
tude from 14,900 feet to 10,000 feet had little effect on the struc—
ture temperatures. These four tests are the only ones which can be
directly compared to show the effects of changes in alrspeed and.
altitude, A further indlcatlon that the structure temperatures

were practically Independent of altitude, airspeed, and alr—flow
rate for the range of these tests, however, can be obtained by
plotting structure-temperature rise as a function of heated—air tem—
perature rise and noting the scatter of the.data. Thils has been
done in figure 11, in which all of the data for several thermo—
couples (except tests 1 and 15) are presented. The curves of

figure 9 have been reproduced on figure 11 as a basis of comparison.
Figure 11 shows that the test varlations in flow rate (3075 1lb per
hr to 6000 1b per hr), pressure altitude (S.L. to 15,900 ft), and
indiceted airspeed (114 to 170 mph), had little effect on the struc—
ture temperatures, and that all of the structure-temperature data
obtained may be considered as a function of only duct-eir tempera—
ture without serlious error.

The effect of the presence of free water in the air on the
structure temperatures is evident from a comparison of tests 14 and
15. The principal influence of the water is to produce a reduction
of leading-edge surface temperatures as shown for wing station 112
In figure 12. The region of surface—temperature reductlion corre—
sponds approximately to the area upon which the cloud drops lmpinge,
and little effect 1s noted rearward from that area. Thus, the
nose—rib temperatures aft of 5 percent chord and the baffle—plate
temperatures are not influsnced appreciably by flight in clouds.

The effect of free water on structure temperatures are of interest;
however, clear-alr structure temperatures should be used for the
design selection of maximum structure temperatures, since thermal
systems are usually operated comstantly in potential icing con—
dltions and the critical structure temperatures would be encountered
during perlods of flight between clouds.

At several polnts the present data are not in agreement with
conclusions presented in reference 15. This reference points out
that the inner skin temperature may be approximately the same as
the outer skin temperature, as a result of almost perfect conduction
of heat from the inner to the outer skin. The reference suggests s
therefore, that the effective surface for the removal of heat from
the heated alr in the double—skin region is the sum of the surface
areas of the inmer and outer skin. The data of this report show
that, at least for the test airplane, the average temperature rise
of the inmer skin wes 1.5 to 2.0 times the average temperature rise
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of the outer skin. This result would indicate poor heat trensfer
between the skins, and that the conservative design assumption would -
be to assums that only a small portion, if any, of the heat flow

from the heated air to the inner skin is eventually transferred to
the outer skin. Reference 15 also points out that the temperaturs

of the baffle plate may be within a few degrees of the outer skin
tempsrature. The data of this report (table I) show thé baffle—
plate temperature rises to bs 2 to 3.5 timss as high as the outer
skin average temperature rise, which would prove of importance if

the use of the baffle as a spar is contemplated.-

CONCLUSIONS

The following conclusions are based on flight data obtained
during the operation of a typical thermal ice—prevention system,
and are applicable to thermal systems similar to the one tested:

1. The reduction of ultimate and yield strength resulting
from the elevated temperatures of the structural components of a
heated wing merits consideration in the design, particularly for a
system in which the heated—air temperatures are not regulated.

2. The structure temperatures are primarily affected by the
temperature of the heated alr employed, and Increase almost In di-—
rect proportion to the Increase in heated—alr temperature.-

Ames Aeronautical Léboraﬁory,
National Advisory Committee for Aeronautics,
Moffett ‘Fleld, Califormia
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Figure 3.— Corrugated immer skin and revised nose ribs installed in leading edge of the left wing
outer penel of the cargo ailrplane.
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Figure 4.— Rear view of 5.5-percent—chord baffle plate‘installed in
wing outer—panel leading edge of the cargo airplane.
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Flgure 5.— Nose liner in right-sring
outer—panel leading edge viewed
from inboard end.
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Figure 6. — Typical details of attach—
ment of revised wing outer—panel
leading edge to original structure.
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FIGURE 7.- LOCATION AND GENMERAL INTERMAL DESIGN OF THE
THREE TYPES OF LEADING EDGES TESTED IN THE OUTEL WG LANEL.
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